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Figure 1: Using data from a virtual reality headset, we identified instances of improper head posture in gaming contexts
and applied a visual intervention to correct them. Two design approaches for the intervention were explored: explicit visual
indicator (A) and implicit background change (B). Results indicate that the interventions effectively decreased participants’
average slouching level and time spent in improper head posture during gameplay.

ABSTRACT
While virtual reality (VR) games offer immersive experiences, pro-
longed improper head posture during VR gaming sessions can cause
neck discomfort and injuries. To address this issue, we prototyped a
framework to detect instances of improper head posture and apply
various visual interventions to correct them. After assessing the
prototype’s usability in a co-design workshop with participants
experienced in VR design and kinesiology, we refined the interven-
tions in two main directions — using explicit visual indicators or
employing implicit background changes. The refined interventions
were subsequently tested in a controlled experiment involving a
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target selection task. The study results demonstrate that the in-
terventions effectively helped participants maintain better head
posture during VR gameplay compared to the control condition.
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1 INTRODUCTION
In recent years, VR gaming has experienced significant development
and achieved commercial popularity [56], leading to a wide range
of useful applications, including educational tools [63], medical
simulation [53], and phobia treatment [19]. While VR games offer
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engaging experiences, during extended VR gaming sessions, the
persistent neck strain caused by the weight of VR headsets can
lead to muscle discomfort and injuries [36, 55, 65]. Moreover, as
previous research has highlighted that maintaining good posture
is a challenging problem in real-world office work [21], the issue
becomes more demanding in VR gaming, where users might be too
immersed in the gameplay to remain aware of their posture [23].

While various systems have been designed for posture correc-
tion during office computer use [60, 62], effective solutions within
VR gaming remain scarce. One relevant prior work examined unob-
trusive posture manipulation via moving content in the VR display
[61]; however, this study only focused on correcting sitting posture
in the context of VR office work. Nevertheless, gaming remains
one of the most popular VR applications, where improper posture
is particularly prevalent due to the extended period users spend
immersed in gameplay compared to other applications [17, 56]. Fur-
thermore, VR gaming experiences often require users to stand and
move around, making it challenging to detect and correct improper
posture. To the best of our knowledge, no prior research has inves-
tigated standing posture correction during VR gameplay, and this
work aims to address this gap.

To effectively correct posture during VR gameplay, two key tasks
must be addressed: 1) posture detection and 2) posture correction.
Posture detection involves accurately tracking users’ body motion
during VR gameplay and identifying instances of improper posture,
while posture correction entails providing feedback to encourage
users to correct their posture.

First, regarding posture detection, we specifically targeted the
two most common forms of improper standing head posture: for-
ward head posture and slouching [31, 35]. Forward head posture
involves the head consistently tilting forwards, placing strain on
the neck and upper back muscles [20]. Slouching, on the other
hand, is characterized by rounded shoulders and a curved thoracic
spine, which can lead to misalignment and potential musculoskele-
tal issues [44]. Although there have been methods to detect these
improper posture types using external sensors or motion tracking
cameras [42, 43, 48], no prior work has attempted to achieve this
directly through the sensors within the headset of a VR system.
Hence, we developed a detection framework that utilizes angu-
lar and height data directly from the VR headset to identify both
forward head posture and slouching instances.

Secondly, for posture correction, we developed a set of inter-
ventions that would activate whenever the detection framework
identifies improper posture from the VR user. The current research
focuses on visual interventions — feedback visible within the VR dis-
play — including explicit warnings such as pop-up notifications, and
implicit warnings like a change in the environment color scheme.
These interventions draw inspiration from prior research in posture
intervention within the HCI and VR design literature [12, 39, 46].

To explore the seamless integration of corrective interventions
into VR gaming experiences, we conducted a two-step investigation:

(1) We organized co-design workshops involving participants
with expertise in kinesiology, UX/UI design, and VR pro-
gramming. In these co-design sessions, participants evalu-
ated the usability of our prototyped interventions, provid-
ing feedback and suggestions. They also brainstormed new

design ideas, which we incorporated to refine the initial
interventions.

(2) To assess the effectiveness of the refined interventions, we
conducted a controlled experiment where participants en-
gaged in an extended target selection game. Throughout
each trial of the experiment, we tracked the participants’
head posture, then analyzed the data to confirm the efficacy
of the interventions in helping VR users maintain good
head posture and correcting improper head posture during
gameplay.

In summary, our research contributions are:
• A novel head posture detection technique that exclusively

utilizes data collected from the VR system’s headset.
• A co-design workshop to brainstorm and refine visual in-

terventions for head posture correction during VR gaming.
• An evaluation study to comprehensively assess the usability

and effectiveness of the proposed interventions.
• A detailed discussion of design principles and challenges as-

sociated with posture correction interventions in VR games.

2 RELATEDWORK
This section provides an overview of relevant existing research
literature, focusing on three main areas: Improper Posture in VR
Usage, Posture Detection, and Posture Correction.

2.1 Improper Posture in VR Usage
Significant posture issues can arise from using a VR headset, due
to its added weight on the user’s neck and the immersive nature
of the VR experience. Indeed, previous work in kinesiology has
highlighted the discomfort caused by head-mounted equipment
that adds significant weight to the neck [16, 68]. For example, in one
study comparing the posture and neck muscle tension of Canadian
Force helicopter pilots during routine simulated night and day
flights, the findings revealed a notable increase in flexed posture
and tensed neck muscles among night pilots, which was attributed
to the prolonged use of head-mounted night goggles [16]. These
night goggles weigh 500g on average [24], so VR users, wearing
headsets weighing between 400g (the Oculus) and 800g [29], are
also susceptible to similar issues, as the added weight and pressure
from headset use can strain the neck muscles and lead to discomfort
or injuries [8, 33, 36, 45, 55, 65].

Another common cause of posture issues in the real world is
a lack of awareness of one’s current posture. This is particularly
prevalent among office workers who spend long hours in front
of digital displays, often resulting in slouching, musculoskeletal
discomfort, and other long-term posture problems [21]. This phe-
nomenon is typically linked to extended screen focus and a lack
of attention to posture [23]. Similarly, the immersive nature of VR
experiences can distract users from maintaining proper posture,
leading to improper posture habits [29].

Furthermore, individuals with pre-existing improper standing
postures may experience heightened discomfort in VR. The phys-
ical demands of wearing VR headsets, combined with a lack of
attention to posture during immersive experiences, can exacerbate
improper posture habits and lead to increased muscle strain and
discomfort [36, 44]. These factors highlight the need for innovative
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solutions to address the ergonomic challenges faced by VR users.
Despite the growing popularity of VR technology, there remains
a lack of comprehensive solutions to mitigate the risk of injuries
and musculoskeletal disorders for VR users. The current research
focuses on two key issues: detecting instances of improper head
posture in VR, particularly forward head posture and slouching,
and correcting them through visual interventions.

2.2 Posture Detection
A variety of posture detection techniques have been developed to
identify improper posture in real-time. One well-studied method
for detecting improper sitting posture involves using different types
of sensors, most commonly pressure sensors, attached to chairs
[14, 50, 54]. These sensors measure body contact with the chair
and interpolate the current posture state with this data. However,
VR gaming applications typically require users to stand and move
within a designated VR workspace, making sensor-measured body
contact not suitable for inferring posture state.

An alternative method for identifying improper standing posture
involves using wearable sensors integrated into clothing, which
measure muscle activation at the neck or back to infer posture state
[15, 49, 71]. Another approach utilizes full-body tracking systems,
such as Kinect cameras, to capture body pose and categorize pos-
ture as good or bad [9, 28, 66]. Although both methods are highly
accurate and comprehensive for detecting both sitting and standing
posture, they require specialized devices that are not readily acces-
sible to the average VR gaming user. In particular, while wearable
sensors provide detailed muscle activation data, integrating these
sensors into everyday clothing can be cumbersome and impractical
for regular VR use [25, 59]. Similarly, full-body tracking systems
like the Kinect camera offer precise posture analysis but require
a clear line of sight, as well as additional hardware that can be
expensive and intrusive in a home VR setup [10, 74].

Given the limitations of existing posture detection technologies,
this work aims to develop a more convenient and practical solution
that seamlessly integrates into the VR gaming experience with-
out requiring extra equipment. Drawing inspiration from previous
studies in HCI that leverage data collected directly from the VR
system’s headset [33, 45, 61], we propose a framework for identify-
ing improper standing head posture using the VR system’s built-in
Inertial Measurement Unit (IMU) sensors. The detection framework
specifically targets the correction of slouching and forward head
posture while standing in VR, offering an accurate, convenient, and
cost-effective alternative to other detection methods.

2.3 Posture Correction
Previous HCI research has introduced various techniques for cor-
recting improper postures during extended office work. These ap-
proaches include intrusive methods, such as pop-up notifications
[28], haptic feedback from wearable devices [6], and screen locking
[60]. Additionally, more unobtrusive solutions have been explored,
such as ambient displays and avatars [26, 30], or manipulation of
the external environment [62]. While these studies primarily focus
on posture correction in real-world office work settings, we draw
inspiration from the research to develop an initial set of posture
correction interventions for VR gaming.

On the other hand, few studies have explored techniques for
correcting improper posture in VR environments. Shin et al. ex-
plored an unobtrusive method for adjusting posture during VR
office work [61], while another study investigated the efficacy of
VR exercises in correcting forward head posture [64]. The current
research contributes to this underexplored area by focusing on pos-
ture correction in a novel context: VR gaming. Unlike sedentary VR
work, VR gaming involves more dynamic and varied movements,
posing unique challenges for posture correction. Moreover, while
Son [64] demonstrated the benefits of VR exercises for improving
posture, maintaining proper posture during prolonged VR immer-
sion, especially when the user’s primary focus is not on posture
improvement, remains a challenge. Therefore, the current research
explores a range of interventions aimed at enhancing users’ posture
awareness during extended VR gaming sessions, without disrupting
the primary gaming experience.

3 SYSTEM DESIGN
In this section, we discuss the architecture and design of our VR
system, which includes two main components: a framework for
posture detection and interventions for posture correction.

3.1 Posture Detection Framework
As mentioned earlier, the current research aims to detect two types
of improper posture during VR gameplay: forward head posture
and slouching. Rather than relying on external sensor hardware
to measure standardized posture metrics, such as the back angle
used in Shin et al. [61], we utilize the VR device’s onboard sensors
for head and neck posture detection. This approach allows for
faster deployment to the general public. Prior work by Ho-Hee
[64] on posture management similarly employed a non-standard
method (ruler and threshold-based) to assess height and head angle.
Additionally, while previous research often focuses on full-body
posture using standardized metrics, our study specifically targets
head posture. In linewith our objectives, we chose non-standardized
metrics measured with the built-in VR head-mounted display for
posture detection.

To achieve this, we implemented a posture detection framework
in Unity using a Meta Quest 1 VR system. The VR system’s headset
is equipped with IMU sensors, which we utilized to extract the
positional and rotational values of the headset relative to the floor
level at a rate of 10 times per second [51]. The detection framework
then directly uses the rotational pitch value of the headset sensors
to determine the head tilt angle, which indicates how much the
user is looking downward. Additionally, we computed a normalized
height by subtracting a pre-calibrated reference height from the
current height, adjusting for the head tilt angle. This reference
height, which varies between users, was collected while each user
stood upright in proper posture, looking straight ahead — the height
then corresponded to the y-value of the positional data extracted
from the headset sensors [51]. A positive value of the normalized
height indicates that the current height is higher than the reference,
while a negative value indicates the opposite.

As shown in Figure 2, analyzing the head tilt angle helps deter-
mine if a user has a forward head posture. A positive head tilt angle
means the user is looking upwards, while a negative angle means

3
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Figure 2: To validate the reference height ℎ collected by the
VR headset, we used a laser measurement tool (A). In our pos-
ture detection framework, the head tilt angle 𝑎 was directly
obtained from the headset sensors, while the normalized
height was calculated as the difference between the refer-
ence height ℎ and the current height ℎ′ (B).

the user is looking downwards. A lower head tilt angle indicates
a greater downward gaze, which suggests improper posture. Con-
versely, the normalized height measurement provides insights into
slouching behavior. A positive normalized height indicates that the
user is reaching upwards or standing on their toes, while a nega-
tive value indicates slouching. When users slouch, the normalized
height value decreases because the VR headset sits lower on their
head compared to when they maintain proper posture, assuming a
consistent head tilt angle.

In both the co-design and evaluation studies, we conducted a
calibration process each time the participant entered the VR envi-
ronment to establish reference values for the normalized height
and head tilt angle of the VR system’s headset in both good and
bad posture states. Initially, users were instructed to maintain an
upright posture while looking straight ahead for 3 seconds (Fig-
ure 2.a). During this period, positional and rotational data of the
headset were collected and averaged to determine the reference
values indicative of good posture. Subsequently, users were asked
to gradually lower their heads until their head tilt angle approached
the angle threshold and then maintain this posture for an additional
3 seconds (Figure 2.b). This approach allowed us to isolate reference
values that indicate improper posture contributed by head tilting or
slouching, ensuring accurate classification of posture states within
the VR environment.

To verify the accuracy of our posture detection measurements,
we conducted a validation test using a Bosch Blaze GLM165-40 Pro-
fessional laser measurement tool, which has a precision of ±1.5mm
[5]. We captured the actual heights of two volunteer participants
under various posture conditions: looking straight ahead, looking
downward up to 30 degrees, and slouching. These values were then
compared to the data obtained from our detection framework to
assess its performance. This validation process was applied only
to the height data, as the head tilt angle is directly collected from

reliable IMU sensors without requiring further adjustment. The
calculated height data showed a low average error percentage of
0.031%±0.014% compared to the laser measurements, with absolute
error values of 0.50±0.22mm. This confirmed that ourmeasurement
system accurately reflects the user’s head posture.

Additionally, we conducted a pilot study with three volunteer
participants and found that setting an angle threshold of -10 degrees
below eye level and a height threshold of -2 cm effectively distin-
guishes between good and bad posture. If either of these values
falls below its respective threshold, we identify the user as having
an improper posture. This approach was adapted from previous
studies in ergonomics that also use pre-calibrated thresholds to
quickly assess posture state [69, 72].

In addition to these thresholds, we consider the element of time.
A high head tilt angle or normalized height may not necessarily
indicate improper posture; factors such as random movements dur-
ing gameplay or game mechanics that require stooping or looking
downwards could influence these values. Therefore, we only clas-
sify a posture as bad if it persists for over 3 seconds. In other words,
the user is considered to be in an improper posture only if the head
tilt angle exceeds 10 degrees or the normalized height surpasses 2
cm continuously for 3 seconds. Again, these criteria were validated
during the pilot study.

3.2 Posture Correction Interventions
We designed corrective interventions that are triggered whenever
the posture detection framework detects improper posture in a user.
We focused exclusively on visual interventions due to the conve-
nience and flexibility of using only the VR headset display, without
needing additional actuators. Furthermore, previous research in
Human-Computer Interaction has shown success in using visual
cues for posture correction in office settings, which we aim to adapt
for VR environments [26, 32, 61]. Drawing inspiration from prior
interventions in office settings, which range from explicit screen
notifications [28] to subtle adjustments in the workspace environ-
ment [62], we prototyped four designs for posture correction in VR
gaming, illustrated in Figure 3.

3.2.1 Icon. Previous HCI research has shown that effective visual
interventions for posture can be as simple as a pop-up text or
icon that alerts users to their improper posture [26, 28]. Our first
intervention design (Figure 3.A) follows this approach, featuring a
series of posture icons, each representing different posture levels.
In this representation, the icon for good posture is distinguished
by a green stripe, while icons for improper postures vary in the
intensity of their red stripes. As users adjust their posture, the
corresponding icon lights up while others dim, allowing users to
gauge their posture alignment in real-time.

3.2.2 Grayscale. While explicit icons are easy for users to under-
stand, previous research has noted that such explicitness can be
obtrusive to the task at hand [22]. Consequently, subtle methods for
posture correction have been explored, including ambient displays
and inconspicuous changes in the external environment [26, 30]. Ad-
ditionally, research has shown that behavior change and attention
redirection can be elicited by screen grayscaling [40]. Combining
these ideas, we designed a grayscale-based intervention (Figure
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Figure 3:We developed prototypes of visual interventions for
correcting posture, namely Icon (A), Grayscale (B), Moving
Ball (C), and Circle Fill (D).

3.B), which notifies users of improper posture by switching the
colored scene to grayscale and then reverting to color once users
correct their posture. In this prototype, the scene immediately fades
to grayscale when the user assumes an improper posture, and it
instantly returns to full color as soon as the posture is corrected.

3.2.3 Moving Ball. We derived inspiration for our intervention
from the work of Shin et al. (2019) [62], which explores unobtrusive
posture correction using a robot arm display. Their method involves
subtly adjusting users’ posture by slowly repositioning the monitor.
In our intervention (Figure 3.C), we employ a similar principle,
utilizing a moving ball that ascends vertically to encourage users to
adjust their posture gradually. Upon achieving the desired posture
alignment, the ball transitions to a green color, indicating successful
correction. To ensure that the moving ball captures users’ attention,
we introduce a rotating crosshair around it, similar to the targeting
mechanisms commonly used in first-person shooter games.

3.2.4 Circle Fill. For this intervention (Figure 3.D), we applied a
similar principle to the Moving Ball intervention, drawing inspi-
ration from previous research on ambient displays and automated
robotic movements [26, 62]. Specifically, the intervention consists
of a white dot that tracks the user’s head movements and a station-
ary black circle that marks the position the user’s head should be
in to maintain good posture. When the dot aligns with the circle,
the user achieves the ideal posture. Users correct their posture by
moving the dot to fill the inside of the circle, which makes the
black circle disappear. Unlike the Moving Ball intervention, which
requires users to look towards the ball to achieve proper posture,
this intervention introduces a mini-challenge that encourages users
to engage with it, thereby promoting correct posture.

4 USER STUDY 1: CO-DESIGNWORKSHOP
To evaluate the effectiveness of the posture detection framework,
assess the usability of our prototype posture correction interven-
tions, and explore other potential designs, we conducted a co-design
workshop. The participants, who had experience in UX/UI design,
VR programming, and kinesiology, were recruited because design-
ing unobtrusive and effective interventions in VR settings is a
challenging task that requires prior experience. We believed their
background would contribute to assessing the prototyped designs
accurately and generating promising ideas for new designs.

4.1 Participants
The co-design workshop involved 9 participants (3 female, 6 male),
aligning with the typical range of 6 to 10 participants used in similar
prior research on participatory design for virtual reality applications
[13, 47, 58, 67]. The participants had an average age of 20.78 ±
0.62. They were university students with experience or coursework
in UX/UI design, VR programming, or kinesiology. 6 participants
self-identified as frequent gamers, with three of them regularly
playing games in VR. Participants were divided into three groups
corresponding to 3 different sessions of the co-design workshop
(Table 1). Each group was formed to include at least one participant
with experience in Kinesiology and one in VR Programming or
UX/UI design, ensuring a balanced discussion in each workshop
session. All participants consented to take part in the workshop,
and the study was approved by our institutional review board.

Table 1: Participants and Group Information for the Co-
Design Workshop

Group Gender Age Prior Experience Frequent Gamer

Group 1
Male 19 VR Programming Yes
Male 24 Kinesiology Yes
Female 20 UX/UI Design No

Group 2
Male 19 VR Programming Yes
Male 19 VR Programming Yes
Male 23 Kinesiology Yes

Group 3
Male 20 UX/UI Design No
Female 22 VR Programming Yes
Female 21 Kinesiology No

4.2 Procedure
Our co-design workshop consisted of four main parts: an introduc-
tion, two brainstorming discussions, and a VR interaction segment.
First, all participants were introduced to the goals and procedures
of the co-design workshop. To facilitate group discussions, the
participants also introduced themselves, including their names,
backgrounds, and expertise, to the other group members. Next, in
the first brainstorming discussion, each participant individually
brainstormed and designed their posture correction interventions
before sharing and discussing their ideas. In the subsequent VR
interaction segment, participants experienced the posture correc-
tion interventions in VR that we had implemented as described in
Section 3.2 and completed brief evaluation surveys on their usabil-
ity. Finally, they engaged in another brainstorming discussion to
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refine their initial intervention designs or generate new ideas. Each
co-design workshop session lasted up to 2 hours. Video record-
ings, evaluation survey data, and design sketches were collected
for analysis. Further details about the workshop are as follows:

4.2.1 Brainstorming Discussion. An initial brainstorming segment
was conducted before the VR interaction segment to allow partici-
pants to generate their unique ideas for posture correction interven-
tions. Discussions were then held around the following questions:

• Why do you think this intervention would be effective?
• What do you think are the strengths of this intervention?
• Are there any disadvantages/trade-offs that you can think

of regarding this intervention?
• What are some possible factors in VR gaming that may

affect the effectiveness of this intervention?
Another brainstorming segment was run after the VR segment,
allowing participants to enhance their initial designs or generate
novel ideas. A new set of questions was used for the second discus-
sion to examine how the participants’ revised designs differed from
their initial ones:

• How did the VR interventions affect your design?
• Why do you think this intervention would be effective

compared with your previous design?
• What are the new strengths, disadvantages, and trade-offs

of your new intervention?
• What are some possible factors in VR gaming that may

affect the effectiveness of your new intervention?
Both sets of questions were adapted from previous studies on co-
designing posture correction interventions [52, 70].

During each 5-minute brainstorming segment, to better under-
stand the participants’ intervention design, each participant was
asked to sketch their designs on a paper. Figure 4 shows samples of
participants’ designs from both the first and second brainstorming
discussions. The former interventions (Figure 4.A) include promi-
nent warning popups and notifications that explicitly instruct the
user to correct their posture. These warnings occupy a significant
portion of the display, with one even requiring user interaction.
In contrast, the latter interventions (Figure 4.B) are more subtle,
featuring implicit notifications placed in the corner or along the
side of the display. One intervention also proposes grayscaling the
screen as a possible approach.

4.2.2 VR Interaction. After the first brainstorming segment and
before the second, each participant experienced all four of our
prototype VR interventions. They were instructed to intentionally
assume an improper posture state for approximately 10 seconds
to trigger each intervention, return to a good posture, and repeat
this cycle five times or until they fully understood how each inter-
vention worked. After experiencing all interventions, participants
completed a short survey rating each intervention’s intuitiveness,
non-intrusiveness, and likelihood of future usage on a Likert scale
from 1 to 7. The survey also included an open-ended question asking
what participants liked or disliked about each intervention.

4.3 Results
This section summarizes the results of the co-design workshop,
including average survey scores with standard errors, participants’

open-ended feedback on the prototyped intervention designs, and
their brainstormed interventions. We also discuss our refined in-
terventions, which incorporate the participants’ feedback and sug-
gested designs. We chose not to conduct statistical tests on the sur-
vey scores due to the small number of participants, the exploratory
nature of this study focusing on refining the visual interventions,
and the plan to conduct a comprehensive evaluation study later.

4.3.1 Survey Score. As shown in Figure 5, while the Icon inter-
vention was considered the most intrusive (𝑀 = 2.89 ± 0.73), it
was also rated the most intuitive (𝑀 = 5.33 ± 0.37) and received
the highest average score for future usage (𝑀 = 5.33 ± 0.44). The
Grayscale intervention had the highest average non-intrusiveness
score (𝑀 = 3.78 ± 0.72) and also received the second highest av-
erage ratings for intuitiveness (𝑀 = 4.67 ± 0.73) and future usage
(𝑀 = 4.00 ± 0.78). On the other hand, not only did the Moving
Ball intervention receive the lowest average ratings for both future
usage (𝑀 = 3.33 ± 0.76) and intuitiveness (𝑀 = 4.11 ± 0.70), and it
was also considered quite intrusive (𝑀 = 3.00± 0.67). Finally, while
the Circle Fill intervention was relatively intuitive (𝑀 = 4.56±0.38)
and users rated it highly for future use (𝑀 = 4.00 ± 0.58), it was
perceived as more intrusive compared to the other interventions
(𝑀 = 3.33 ± 0.47).

4.3.2 Open-ended Feedback. The open-ended survey responses
supported the rating data, with participants expressing clear prefer-
ences and dislikes for our prototyped posture correction interven-
tions. First, they praised the Icon intervention for being straightfor-
ward and agreed that an explicit visual cue like an icon would help
users easily understand and manage their posture in VR gameplay.
In particular, P2 commented, "Out of all the interventions, Icon is
clearest and most understandable," while P4 mentioned, "Icon can be
used in any VR game, but the other [interventions] are not." Other
participants also agreed that Icon is the most adaptable interven-
tion for future use due to its simplicity and flexibility for any VR
application. However, participants also noted that the prototyped
Icon design was overly complex and might distract users from the
primary VR game. P1 mentioned, "It took me a while to understand
how the colors in the icon correspond to different levels of bad posture."
P2 added, "I sometimes play puzzle-solving games in VR, and the
colors of the Icon would be distracting." Based on this feedback, we
simplified the design to use only two levels — good posture and
improper posture — for our refined Icon intervention.

Second, the Grayscale intervention was praised for being non-
intrusive and understandable, but participants were concerned
about its adaptability for integration into commercial VR appli-
cations. While P9 noted that she could easily recognize the connec-
tion between the grayscale screen and her improper posture, P4
commented, "The grayscaling is very stark and bad for VR games
with detailed graphics." To address this issue, we redesigned the
Grayscale intervention to include a less drastic shift in intensity,
ensuring that in-game colors remain visible.

On the other hand, participants found both the Moving Ball and
Circle Fill interventions difficult to understand and felt that they
conflicted with the Icon intervention. P5 specifically mentioned
that the Circle Fill intervention was too similar to the Moving Ball
intervention, and both served the same purpose as the Icon but
were less effective. Other participants agreed with this notion, with
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Figure 4: Participants’ brainstormed interventions in the co-designworkshopwere compared before experiencing our prototyped
interventions (A) and after experiencing them (B).

Figure 5: The average participant survey scores, along with
standard errors, for the prototyped interventions measured
across three factors: intuitiveness, non-intrusiveness, and
likelihood of future use.

P6 stating, "It took me a few tries to understand the mechanics of
both [Moving Ball and Circle Fill] interventions. The Icon one was
much more intuitive". P8 added, "I would not use the [Moving Ball and

Circle Fill] interventions for the competitive games I play." However,
some participants appreciated how the Moving Ball intervention
naturally encouraged them to look upwards. For example, P1 said,
"I prefer Moving Ball to Icon because it made me naturally look up,
rather than having to interpret the meaning of the icon." Overall, 7
out of 9 responses to the Moving Ball and Circle Fill interventions
were unenthusiastic, with positive feedback mainly noting their
subtle influence on improving posture. Therefore, we decided not
to use these designs in the refined intervention set and instead
incorporated the feedback to develop a better ambient design for
the refined Grayscale intervention.

4.3.3 Brainstormed Interventions. Figure 4.a displays participants’
brainstormed interventions before the VR interaction segment,
while Figure 4.b shows the modified interventions following the
VR experience. Interestingly, before experiencing the prototyped
VR interventions, all participants recommended using explicit vi-
sual feedback, yet afterward, they favored the less intrusive option
of implicit background change provided by the Grayscale inter-
vention. While participants noted that their initial designs were
influenced by notifications and warning dialogs in mobile or desk-
top applications, through the VR experience, they realized that such
designs would be much more intrusive in a VR environment. For
example, P6 mentioned, "I didn’t expect how in-your-face the visual
notifications would be in VR." Additionally, participants observed
that grayscaling could subtlely convey the gesture state, with P9
claiming, "Grayscale did not interrupt my VR experience like the other
[interventions]." This shift in preference reinforced our decision to
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refine the interventions in two directions: explicit visual feedback
and implicit background changes.

Furthermore, alongside the shift in preference towards the grayscal-
ing intervention, participants moved from discrete interventions —
providing warnings only when bad posture is detected — to more
continuous interventions that gradually increase in intensity as
posture worsens. P5 emphasized, "I prefer interventions that gradu-
ally adjust based on my posture, rather than just giving a warning
when it’s already bad." Our refined interventions incorporate this
feedback by gradually adjusting the opacity of the explicit design
and the grayscale level of the implicit design in correlation with
the degree of improper posture.

Finally, although the design philosophy evolved between the first
and second rounds of brainstorming, common themes remained.
First, the interventions mainly fell into two categories: explicit vi-
sual feedback, such as warning signs, icons, or text signals, and
implicit background changes, like grayscaling. Second, most in-
terventions were inspired by personal experiences with posture
during computer and phone use. Consequently, the designs featured
familiar color schemes — red for improper posture notifications
and green for proper posture — as well as common themes such as
pop-up boxes and arrows (see Figure 4) to ensure user familiarity
and usability. Finally, participants stressed the importance of cus-
tomization for all interventions, allowing users to fine-tune each
intervention according to their preferences. P7 added, "I would like
to change the intensity and style of the intervention to my liking."
We included these insights in our design guidelines for posture
correction interventions.

4.3.4 Refined Interventions. As discussed previously, based on feed-
back from the VR interaction segment and ideas from the brain-
storming segments, we refined our interventions in two directions:
explicit visual feedback using a simple icon and implicit background
change through grayscaling (Figure 1). In both interventions, we
adopted a continuous approach where the icon’s opacity and the
grayscaling’s intensity vary based on the severity and duration of
improper posture. For simplicity, we will refer to these two refined
interventions as Icon and Grayscale, respectively.

5 USER STUDY 2: EVALUATION STUDY
With the newly refined interventions, we conducted a controlled
experiment to assess the effectiveness of each intervention in man-
aging posture during VR gameplay, compared to a control condition
with no intervention.

5.1 Hypothesis
We aim to test whether the refined interventions are effective in
reducing the level and duration of improper posture in VR gaming
users, as well as decreasing the number of intervention triggers.
Therefore, our hypotheses are as follows:

• H1. The use of interventions will reduce participants’ level
of forward head posture, as indicated by an increase in head
tilt angle.

• H2. The use of interventions will reduce participants’ level
of slouching, as indicated by an increase in normalized
height.

• H3. Participants would spend less time in improper posture
when interventions are deployed.

• H4. The actual number of times each intervention is trig-
gered would be less than the number of times they would
have been triggered in the control condition.

5.2 Participants
18 participants (11 males, 7 females) were recruited from the uni-
versity, consistent with the participant range of 12 to 30 in prior
works evaluating posture management systems for virtual reality
[2, 57, 64]. The participants had an average age of 23.56 ± 0.72.
Those who took part in the co-design workshop were not eligi-
ble for this evaluation study. All participants had no history of
postural abnormalities or musculoskeletal disorders and reported
little to no prior experience with virtual reality (VR) applications.
The inclusion criteria ensured that participants had no pre-existing
conditions that could affect their posture during the experiment.
All participants consented to take part in the study, and the study
was approved by our institutional review board.

5.3 Methods
We employed a within-subject methodology for our experiment,
which included three distinct conditions. Each participant com-
pleted the same target selection task in VR three times: once without
any interventions (control), once with the explicit Icon intervention,
and once with the implicitGray intervention. We collected quantita-
tive data on participants’ posture states, including their normalized
height, head tilt angle, improper posture duration, and interven-
tion trigger count. Additionally, we gathered qualitative survey
responses on the interventions’ intuitiveness, non-intrusiveness,
and potential for future use, along with open-ended comments
providing general thoughts and suggestions for each intervention.

5.3.1 Conditions. Each participant in the evaluation study per-
formed a target selection task under three conditions, correspond-
ing to the two refined interventions from the co-design workshop
and a control condition, as follows:

• Control: No intervention was provided.
• Icon:When a participant was in an improper posture, an

Iconwould be displayed to explicitly instruct the participant
to correct their posture

• Grayscale:When a participant was in an improper posture,
the VR environment’s background would be grayscaled to
implicitly encourage them to correct their posture.

5.3.2 Task. Since the current research focuses on posture correc-
tion during VR gameplay, the evaluation task needs to simulate a
typical VR gaming experience. The task had to be engaging enough
to resemble a real game while also potentially distracting partici-
pants from their posture. To this end, we chose a target selection
task [73], where participants used VR controllers to continuously
select targets presented in front of them over 10 minutes (Figure
6). We chose the target selection task over other tasks such as
navigation or object manipulation because not only is it a funda-
mental aspect of interaction in VR [18] that has been widely used
in previous VR studies [3, 27, 41], but also it aligns well with our
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Figure 6: The target selection task requires participants to
choose the correct ball based on its color and the ray cast
from the VR controller. The ray remains red (left) until the
participant selects the correct ball (right), on which the ray
turns green.

objectives of both simulating a gaming experience and involving
enough repetition to make participants neglect their posture.

Participants stood in a designated area and used a red ray cast
from the VR controllers to point at and select targets appearing in
various locations within the VR environment. All participants were
right-handed and were instructed to hold the VR controller with
the red ray in their right hand, while their left hand held the other
controller that did not influence the task. After selecting a target,
it would move to a new random location, requiring participants
to select it again. The repetitive nature of the task was designed
to potentially divert participants’ attention from their posture. To
enhance engagement and mimic a gaming experience, participants
were informed that their performance would be scored and dis-
played at the end of the 10 minutes. However, we intentionally
chose not to record these scores for analysis, as the primary focus
of the experiment was on posture state as the dependent variable.

5.3.3 Procedure. First, each participant received instructions on
how to complete the target selection task and then had a 2-minute
practice run to become familiar with the VR equipment and task
requirements. In addition, participants were informed that there
might be visual changes in the VR display during some trials to
indicate their posture state, but they were not given specific details
about the design or purpose of these visual cues. This approach
was intended to keep participants aware of the visual interven-
tions for posture correction without explicitly revealing what the
interventions were or how they worked.

Next, each participant completed the target selection task under
all three conditions, which were presented in a randomized order
using a balanced Latin Square design. During the task, participants’
posture state was continuously monitored and recorded at a rate of
10 times per second. After finishing the task under each condition,
participants completed a brief post-trial questionnaire to provide
feedback on the intervention’s intuitiveness, intrusiveness, and
likelihood of future usage. This questionnaire was not administered
for the control condition.

After completing the tasks for all three conditions, participants
took part in a post-study survey to share their comments and
thoughts on the interventions and study design. Following this,
a debriefing session was held to explain the purpose and details of
the experiment. The study was conducted in a controlled laboratory
environment, with each session lasting approximately 45 minutes.
The sessions included instructions, a practice run, the execution of
tasks under all three conditions, and debriefing.

5.3.4 Data Collection. We collected quantitative data on each par-
ticipant’s posture, including normalized height (in meters, to mea-
sure slouching), head tilt angle (in degrees, to measure forward
head posture), time spent in improper posture (in minutes), and
trigger count (the number of times interventions were triggered or
would have been triggered in the control condition). Additionally,
the post-trial questionnaire gathered qualitative ratings on each
intervention’s intuitiveness, non-intrusiveness, and likelihood of
future use on a Likert scale from 1 to 7. It also surveyed general
comments and suggestions for improving the intervention design
or study procedure.

5.3.5 Analysis. The quantitative data on normalized height, head
tilt angle, time spent in improper posture, and trigger count were
plotted and visually inspected to identify any outliers or anomalies.
While the duration of improper posture and trigger count data
were within normal ranges, we identified outliers in the normalized
height and head tilt angle data, with values falling outside the 15th
and 85th percentiles (greater than 0.1 meters for normalized height
and greater than 30 degrees for head tilt angle). These extreme
values likely resulted from users looking far down at the ground
or up toward the virtual sky (for head tilt angle), or intentionally
dipping or jumping their bodies (for normalized height). We ob-
served that such values were infrequent and typically appeared at
the start and end of each trial, likely due to users preparing for or
finishing the task, which caused their behavior to differ from when
they were actively engaged in the task. To address these issues, we
implemented two preprocessing steps:

(1) To eliminate most of the outlier values at the beginning and
end of each trial, we removed the first and last 50 entries
from each trial, corresponding to the initial and final 5
seconds.

(2) To adjust the remaining outliers to more reasonable val-
ues, we restricted the data points to a range of ±30 degrees
for head tilt angle and ±0.1 meters for normalized height.
Values outside these ranges were clipped to the nearest
boundary, while values within the ranges remained un-
changed.

After preprocessing the quantitative data, we conducted Kolmogorov-
Smirnov tests to assess the normality of pitch, normalized height,
improper posture duration, and trigger count for each condition. If
the data satisfied the normality assumption, we performed one-way
ANOVAs to compare results across the three conditions. Otherwise,
we used the Kruskal-Wallis test instead. When these tests showed
significant differences, we conducted post-hoc pairwise compar-
isons—using t-tests for normally distributed data or Dunn tests for
non-normal data—with Bonferroni corrections to identify specific
differences between the conditions. For the participants’ ratings
of future usage, intuitiveness, and non-intrusiveness, we applied
Wilk-Shapiro tests to check for normality. Based on the results, we
used t-tests to compare ratings between the Icon and Grayscale
conditions if the data were normally distributed, or Whitney-Mann
U-tests if the data did not meet normality assumptions.

5.4 Results
This section summarizes the results of the evaluation study, includ-
ing average statistics with standard errors for both quantitative
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measurements and qualitative survey scores. We also review the
outcomes of statistical tests and present participants’ responses to
the open-ended survey questions.

5.4.1 Quantitative Data. Although the Control condition had a
lower average head tilt angle (𝑀 = 0.542± 1.753) compared to both
the Icon condition (𝑀 = 3.125 ± 1.409) and the Grayscale condition
(𝑀 = 2.241± 1.231), ANOVA tests showed that the differences were
not statistically significant (𝐹 (2, 51) = 0.79, 𝑝 = 0.461, 𝜂2 = 0.03).
The findings reject hypothesis H1, suggesting that the interven-
tions did not effectively regulate the average head tilt angle or,
consequently, correct forward head posture.

On the other hand, Kruskal-Wallis tests showed a significant
difference in normalized height between the conditions (𝐻∗ (2, 51) =
6.423, 𝑝∗ = 0.04, 𝜂2 = 0.121). Specifically, participants in the Control
condition had a lower normalized height (𝑀 = −0.015 ± 0.0049)
compared to those in both the Icon condition (𝑀 = 0.002 ± 0.0032)
and the Grayscale condition (𝑀 = −0.001 ± 0.0013). The post-hoc
Dunn tests revealed that the statistical significance was mainly
due to the Control condition differing from the Icon condition
(𝑝∗ = 0.025) and the Grayscale condition (𝑝∗ = 0.032). There was
no significant difference between the Icon and Grayscale conditions
(𝑝 = 0.915). The results support hypothesis H2, which predicted
that posture correction interventions would increase participants’
normalized height, indicating less slouching. Additionally, the Icon
and Grayscale interventions were found to be equally effective in
managing slouching in VR users.

ANOVA tests revealed a significant difference in the duration of
improper posture between the conditions (𝐹 ∗ (2, 51) = 4.171, 𝑝∗ =
0.021, 𝜂2 = 0.141). On average, participants in the Control condition
spent 4.837±0.991minutes out of 10 in improper posture, whichwas
longer compared to the Icon condition (𝑀 = 2.409 ± 0.703 minutes)
and the Grayscale condition (𝑀 = 1.8±0.585minutes). Nevertheless,
the post-hoc t-tests only revealed a significant difference between
the Control and Grayscale conditions (𝑡∗ (34) = 2.601, 𝑝∗ = 0.041).
No significant differences were found between the Control and
Icon conditions (𝑡 (34) = 1.998, 𝑝 = 0.161) or between the Icon
and Grayscale conditions (𝑡 (34) = −0.619, 𝑝 = 1.0). The statistics
support hypothesis H3, showing that the refined interventions, par-
ticularly Grayscale, effectively reduced the duration of improper
posture compared to the Control condition. This result is surpris-
ing because the qualitative findings later revealed that participants
preferred the Icon intervention, even though the Grayscale inter-
vention was more effective in minimizing improper posture.

Finally, the average number of times the interventions were
triggered or would have been triggered were as follows: Control
condition,𝑀 = 10.11±3.041; Icon condition,𝑀 = 10.89±2.189; and
Grayscale condition,𝑀 = 11.94 ± 2.975. Kruskal-Wallis tests found
that the differences were not statistically significant (𝐻 (2, 51) =

1.241, 𝑝 = 0.538, 𝜂2 = 0.023). Therefore, hypothesis H4 is rejected,
indicating that the use of interventions did not reduce the number
of times interventions were triggered.

5.4.2 Participants’ Ratings. Future usage ratings were higher for
the Icon condition (𝑀 = 4.72 ± 0.23) compared to the Grayscale
condition (𝑀 = 3.56 ± 0.35), with a significant difference found
with the Whitney-Mann U-test (𝑈 ∗∗ (34) = 256.000, 𝑝∗∗ = 0.002).
Additionally, intuitiveness was rated higher for the Icon condition

(𝑀 = 5.28±0.33) than for the Grayscale condition (𝑀 = 3.67±0.38),
with t-tests showing a statistically significant difference (𝑡∗∗ (34) =
3.199, 𝑝∗∗ = 0.003). This indicates that participants are more likely
to use the Icon intervention in their VR gaming applications due
to its greater ease of understanding. However, t-tests also found
no difference in non-intrusiveness between the Icon (𝑀 = 4.22 ±
0.33) and Grayscale conditions (𝑀 = 4.61 ± 0.37), as shown by
the non-significant result (𝑡 (34) = −0.783, 𝑝 = 0.439), suggesting
that participants perceived both interventions as similarly non-
intrusive. This result contrasted with the findings from the co-
design workshop, where the Icon intervention was perceived as
more intrusive than the Grayscale intervention.

Additionally, the post-study questionnaire, which asked par-
ticipants to choose their preferred intervention, found that most
favored the Icon intervention. Specifically, 75% of participants pre-
ferred the Icon intervention, while only 25% preferred the Grayscale
intervention. Participants’ open-ended responses highlighted this
preference. P4 noted, "The icon made me more aware of my posture
compared to the grayscale. The grayscale kept me more engaged and
less bored, but I didn’t think about changing my posture when I saw
the color change." Similarly, P12 commented, "The icon made it clear
that it was about my posture, whereas the grayscale didn’t make it
obvious what to adjust to bring it back to normal."

6 DISCUSSION
In this section, we interpret the results of the current research, out-
line design guidelines for posture correction interventions, address
the study’s limitations, and suggest directions for future research
on managing posture in VR applications.

6.1 Result Interpretation
We found that hypothesis H1 was not supported by the data, indi-
cating that the interventions did not effectively regulate forward
head posture. One explanation for this is the nature of the target
selection task. Since the targets were programmed to be at the par-
ticipants’ eye level, they implicitly encouraged the participants to
maintain a forward-facing posture for extended periods, thereby
minimizing variations in head tilt angle that hypothesis H1 aimed to
explore. In other words, to complete the task, there was no need for
participants to tilt their heads up and down. While this study design
helped separate instances where the game intentionally requires
head movement from those where the user has improper posture,
it also made the collected data less likely to support hypothesis H1.

Nevertheless, the interventions effectively regulated slouching,
as evidenced by the supported hypothesis H2. This can be attributed
to the target selection task encouraging participants to maintain
a straightforward position throughout the study. By minimizing
forward head posture, improper posture wasmore likely tomanifest
as slouching, which the interventions successfully reduced.

Regarding hypotheses H3 andH4, the results indicated that while
the duration of improper posture was reduced with intervention
use, the number of intervention triggers was not. This discrepancy
may be due to the method used to record triggers. In our study,
a trigger was logged each time the intervention was activated,
regardless of how long the participant maintained improper posture.
Consequently, even prolonged instances of improper posture would
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**

Figure 7: Average head tilt angle (left) and average normalized height (right) across participants plotted against time for all
three conditions. There was no significant difference in head tilt angle across the three conditions. However, a significant
difference was observed in normalized height: both the Icon and Grayscale conditions showed higher normalized heights
compared to the Control condition (𝑝 < 0.05, *).

*

Figure 8: We compared the average duration of improper pos-
ture (A) and the number of intervention triggers (B) across
various conditions. The duration of improper posture in
the Control condition was significantly longer than in the
Grayscale condition (𝑝 < 0.05, *).

be recorded as a single trigger. This approach likely explains why
hypothesis H3, which focused on the duration of improper posture,
showed significant results, while hypothesis H4 did not.

Regarding the qualitative results, we found that the Icon inter-
vention was rated higher for both future usage and intuitiveness
compared to the Grayscale intervention. This aligns with our earlier
findings from the co-design workshop, reinforcing the idea that
while implicit background changes like grayscaling can be effec-
tive for regulating improper posture in VR gameplay, participants
found that an explicit visual cue, such as an icon, is more easily
understood and better suited for future use. This preference is fur-
ther supported by the post-study questionnaire, which showed that

**

**

Figure 9: The average ratings of intuitiveness, non-
intrusiveness, and likeliness for future usage between the
icon intervention and the grayscale intervention. The icon in-
tervention received significantly higher ratings for intuitive-
ness (𝑝 < 0.01, **) and likeliness for future usage (𝑝 < 0.01, **),
while there was no significant difference between the two
conditions for non-intrusiveness.

75% of participants preferred the Icon intervention, while only 25%
preferred the Grayscale intervention.

Nevertheless, there were differences between the survey results
of the co-design workshop and the evaluation study. While the co-
design workshop found that participants considered the Grayscale
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intervention less intrusive than the Icon intervention, the evalua-
tion study did not show higher non-intrusiveness ratings for the
Grayscale intervention compared to the Icon. This discrepancy
may be due to the design of the target selection task: the target
colors were chosen to be similar but distinguishable to increase
task difficulty. When the Grayscale intervention was applied, the
similarity in colors was amplified, making it more challenging to
differentiate between correct and incorrect targets. This increased
difficulty likely contributed to a higher perception of intrusiveness
in the evaluation study.

Interestingly, while participants rated the Grayscale intervention
lower than the Icon intervention in the evaluation study—reporting
similar levels of non-intrusiveness but lower intuitiveness and like-
lihood of future use—the Grayscale intervention was more effec-
tive at reducing the duration of improper posture. Specifically, the
time spent in improper posture was significantly reduced with the
Grayscale intervention compared to the Control condition, whereas
no significant difference was observed with the Icon intervention.
Therefore, despite the Grayscale intervention being potentially less
intuitive, it should still be considered for tasks that allow for subtle
regulation of improper posture. Additionally, improving the imple-
mentation of the Grayscale intervention to better fit the task could
make it less intrusive and more understandable for users.

Overall, the results of this study highlight the potential effec-
tiveness of posture correction interventions in VR environments,
particularly for reducing slouching and decreasing time spent in im-
proper posture. Consistent with previous HCI research that utilized
data from VR system headsets [33, 45, 61], we also demonstrate that
data collected directly from the headset can be used to effectively
manage users’ posture during VR gameplay. While users preferred
the explicit visual icon intervention, the quantitative data indicate
that implicit background changes can be more effective and useful
depending on the task. With more detailed and refined designs,
these interventions could achieve greater user acceptance and be
more widely adopted in commercial VR applications.

6.2 Design Guidelines
Alongside the statistical findings, we gathered valuable comments
and suggestions about the interventions from participants in both
the co-design workshop and the evaluation study. Based on this
feedback, we propose the following design guidelines for posture
correction interventions.

6.2.1 Balancing intuitiveness and intrusiveness with simplicity and
familiarity. Participants in the co-design workshop identified a ten-
sion between making interventions clear enough to be effective
and subtle enough to avoid being intrusive. To address this, they
suggested keeping the designs simple and clear. This includes using
familiar icons with color schemes, or short and legible text pop-ups
for explicit visual feedback and employing grayscaling or other
noticeable changes for background modifications. Participants pre-
ferred these straightforward designs over more complex ones, like
Moving Ball and Circle Fill. Given that these simple designs ef-
fectively managed slouching in the evaluation study, we highly
recommend using similar approaches for other posture correction
interventions. In summary, posture correction interventions should
follow one of two design directions: explicit visual feedback or

implicit background changes, carefully balancing intuitiveness and
intrusiveness. This aligns with previous studies on posture interven-
tion [60, 62], which have shown that notifications or adjustments
designed to correct posture must be noticeable enough to influence
user behavior, yet subtle enough to avoid becoming disruptive.

Nevertheless, implementing these simple designs in fast-paced
or competitive video games requires extra considerations. One
participant mentioned the use of these interventions in competitive
gameplay can be highly disruptive. In such environments, where
quick reflexes and focus are critical, even subtle interventions may
disrupt the player’s flow and performance. Designers must ensure
that any intervention, whether explicit or implicit, does not distract
or cause frustration during intense gameplay. Additionally, the
simplicity of the design should not compromise its effectiveness in
correcting posture without interfering with the player’s primary
objectives in the game.

6.2.2 Customization. Customization emerged as a significant fac-
tor, with participants in the co-design workshop expressing interest
in personalizing the interventions by choosing various icons and
adjusting grayscale levels to suit their preferences. Previous studies
in user interface and user experience have highlighted that allowing
user customization leads to fewer errors, greater user acceptance,
and higher satisfaction [1, 7, 34, 38]. In the current context, as
mentioned previously, participants in the evaluation study noted
that grayscaling made the target selection task more challenging.
For instance, P13 commented, "It would be nice if I could make the
grayscaling affect only the sky color, instead of the targets." Some
participants mentioned that they already had difficulty distinguish-
ing colors, and the Grayscale intervention exacerbated this issue.
This underscores the need for customizable interventions tailored
to different tasks, contexts, and demographics in VR applications.

However, implementing customizable interventions in VR presents
several software challenges. One significant issue is ensuring real-
time performance while applying dynamic changes, as VR envi-
ronments require constant rendering and processing to maintain
immersion. Additionally, allowing users to adjust visual elements
like icons or grayscale levels introduces complexity in managing
multiple settings that must be seamlessly integrated with the VR
system’s existing interface. The customization features also need to
be intuitive, requiring careful design to ensure that users can easily
navigate these options without disrupting the VR experience.

6.2.3 Gradual Notification. One prominent feedback from partici-
pants in the co-design workshop was that our prototyped designs
were too abrupt, appearing suddenly when participants adopted
improper posture and disappearing just as quickly when they
corrected it. To address this, they suggested using more gradual
changes in the intensity of interventions and incorporating a fade-
in/fade-out mechanism for pop-up visual cues. These adjustments
would make the interventions more noticeable and less jarring.
The evaluation study showed that these implemented changes ef-
fectively managed improper posture. This aligns with previous
research on feedback for behavior change, which suggests that
gradual feedback is more effective than instant feedback in influ-
encing a person’s behavior [4, 62]. Therefore, we recommend that
future designs of posture correction interventions in VR applica-
tions apply this design principle.
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6.3 Limitations & Future Works
As previously discussed, the inability of the refined interventions
to manage forward head posture can be attributed to the design
of the target selection task used in our study. The task inherently
biases participants toward minimizing forward head posture, mak-
ing improper posture more likely to manifest as slouching, which
our interventions successfully regulated. Future research could
implement experimental tasks that better capture these nuances,
potentially examining the effectiveness of interventions targeting
head tilt correction versus those addressing slouching behaviors.

We also found that the duration of improper posture decreased
with intervention use, but the number of intervention triggers did
not. This discrepancy is largely due to how we defined what counts
as an intervention trigger. Future studies might benefit from a more
longitudinal approach with a clearer definition of intervention
triggers. This could help determine whether, in the long term, using
these posture interventions in VR applications encourages users to
maintain good posture consistently, thereby reducing the number
of intervention triggers.

Additionally, some participants reported that the task was too
mundane, suggesting it may not accurately simulate the engage-
ment levels typical of real VR gaming experiences. Additionally, our
task was color-based, which was affected by the Grayscale interven-
tion. Future studies should design a more engaging and streamlined
task in which participants find the experience more immersive
and reflective of real-world VR gaming. The task should also be
designed to accommodate different intervention strategies without
compromising their effectiveness. For example, using contrasting
shapes or patterns instead of relying solely on color can help miti-
gate the impact of the Grayscale intervention. This approach will
not only improve the validity of the study but also offer valuable
insights into designing effective and enjoyable VR experiences that
promote good posture.

Another avenue for future research is to incorporate additional
sensing and feedback modalities into the posture detection and
correction framework of the VR system. While the current study
focuses solely on visual interventions, previous studies have demon-
strated that audio and haptic feedback can be just as effective in
managing posture across various contexts [11, 37]. Expanding the
use of these modalities could enhance the effectiveness and adapt-
ability of VR-based posture correction systems.

Lastly, further research is also needed to explore how posture
correction interventions can be made more inclusive and accessible
for individuals with disabilities or visual impairments. Current solu-
tions, such as using icons or grayscale visual feedback, may not be
suitable or effective for these groups. Future studies could investi-
gate alternative methods to ensure that posture correction systems
are usable and beneficial for a wider range of users, regardless of
their abilities or sensory limitations.

7 CONCLUSION
In conclusion, our work provides the first comprehensive explo-
ration into the use of posture management tools within VR gaming
applications. We developed a novel posture detection framework,
evaluated various designs for posture correction interventions, and

conducted a controlled study that validated the efficacy of our ap-
proach in reducing slouching and time spent in improper posture.
This research paves the way for the development of future VR gam-
ing experiences and other applications that are not only engaging
but also promote healthy user posture. By integrating effective
posture correction techniques and user-centric design principles,
these advancements will ensure that users can enjoy immersive ex-
periences without compromising their physical well-being. Moving
forward, future research should explore alternative visual designs
and different feedback modalities for posture correction interven-
tions that can further optimize user experience and effectiveness.
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